MicroRNA-133α regulates neurotensin-associated colonic inflammation in colonic epithelial cells and experimental colitis.
نویسندگان
چکیده
Ulcerative colitis (UC) and Crohn's Disease (CD) are the two most common forms of Inflammatory Bowel Diseases (IBD) marked by chronic and persistent inflammation. Neurotensin (NT), together with its receptor, NT receptor 1 (NTR1), are important mediators in intestinal inflammation and their expression is upregulated in the intestine of experimental colitis models and UC colonic biopsies. MicroRNAs (miRNAs) are short, non-coding RNA molecules which act as transcription repressors. We have previously shown that NT exposure upregulates miR-133α expression in human colonocytes NCM460 cells overexpressing NTR1 (NCM460-NTR1). Recently, miR-133α was further examined forits role in NT-associated proinflammatory signaling cascades and acute colitis in vivo. Our study shows that NT-induced miR-133α upregulation modulates NF-κB phosphorylation and promotes proinflammatory cytokine production. In addition, intracolonicinjection of antisense-miR-133α before colitis induction improves histological scores and proinflammatory cytokine transcription. More importantly, dysregulation of miR-133α levels and aftiphilin (AFTPH), a newly-identified miR-133α downstream target, is found only in UC patients, but not in patients with CD. Taken together, we identified NTR1/miR-133α/aftiphilin as a novel regulatory axis involved in NT-associated colonic inflammation in human colonocytes, acute colitis mouse model and in colonic biopsies from UC patients. Our results also provide evidence that colonic levels of NTR1, miR-133α and aftiphilin may also serve as potential biomarkers in UC.
منابع مشابه
Neurotensin—regulated miR-133α is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis
OBJECTIVE Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. DESIGN miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated int...
متن کاملNeurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin.
Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR...
متن کاملEffects of Yacon on Colonic IFN-γ and Goblet Cells of 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis Mouse Model
Background: IBD is a chronic inflammatory condition associated with damage to the intestinal mucosal barrier. Supplementation of yacon tubers has been known to give positive effect in intestinal health. Therefore, we conducted the study to investigate the effect of yacon tuber powder on Th1 activation pathway by evaluating IFN-γ levels and the number of goblet cells in the colon of colitis mous...
متن کاملNeurotensin is a proinflammatory neuropeptide in colonic inflammation.
The neuropeptide neurotensin mediates several intestinal functions, including chloride secretion, motility, and cellular growth. However, whether this peptide participates in intestinal inflammation is not known. Toxin A, an enterotoxin from Clostridium difficile, mediates pseudomembranous colitis in humans. In animal models, toxin A causes an acute inflammatory response characterized by activa...
متن کاملNeuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation.
Because neurotensin (NT) and its high-affinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA & disease
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2015